An Efficient System Based On Closed Sequential Patterns for Web Recommendations

نویسنده

  • Utpala Niranjan
چکیده

Sequential pattern mining, since its introduction has received considerable attention among the researchers with broad applications. The sequential pattern algorithms generally face problems when mining long sequential patterns or while using very low support threshold. One possible solution of such problems is by mining the closed sequential patterns, which is a condensed representation of sequential patterns. Recently, several researchers have utilized the sequential pattern discovery for designing a web recommendation system, which provides personalized recommendations of web access sequences for users. This paper describes the design of a web recommendation system for providing recommendations to a user‘s web access sequence. The proposed system is mainly based on mining closed sequential web access patterns. Initially, the PrefixSpan algorithm is employed on the preprocessed web server log data for mining sequential web access patterns. Subsequently, with the aid of post-pruning strategy, the closed sequential web access patterns are discovered from the complete set of sequential web access patterns. Then, a pattern tree, a compact representation of closed sequential patterns, is constructed from the discovered closed sequential web access patterns. The Patricia trie based data structure is used in the construction of the pattern tree. For a given user’s web access sequence, the proposed system provides recommendations on the basis of the constructed pattern tree. The experimentation of the proposed system is performed using synthetic dataset and the performance of the proposed recommendation system is evaluated with precision, applicability and hit ratio.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Neoteric Web Recommender System based on Approach of Mining Frequent Sequential Pattern from Customized Web Log Preprocessing

A real world challenging task of the web master of an organization is to match the needs of user and keep their attention in their web site. So, only option is to capture the intuition of the user and provide them with the recommendation list. Web usage mining is a kind of data mining method that provide intelligent personalized online services such as web recommendations, it is usually necessa...

متن کامل

Performance Improvements and Efficient Approach for Mining Periodic Sequential Access Patterns

Surfing the Web has become an important daily activity for many users. Discovering and understanding web users’ surfing behavior are essential for the development of successful web monitoring and recommendation systems. To capture users’ web access behavior, one promising approach is web usage mining which discovers interesting and frequent user access patterns from web usage logs. Web usage mi...

متن کامل

Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems

  One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...

متن کامل

High Fuzzy Utility Based Frequent Patterns Mining Approach for Mobile Web Services Sequences

Nowadays high fuzzy utility based pattern mining is an emerging topic in data mining. It refers to discover all patterns having a high utility meeting a user-specified minimum high utility threshold. It comprises extracting patterns which are highly accessed in mobile web service sequences. Different from the traditional fuzzy approach, high fuzzy utility mining considers not only counts of mob...

متن کامل

Efficient sequential access pattern mining for web recommendations

Sequential access pattern mining discovers interesting and frequent user access patterns from web logs. Most of the previous studies have adopted Apriori-like sequential pattern mining techniques, which faced the problem on requiring expensive multiple scans of databases. More recent algorithms that are based on the Web Access Pattern tree (or WAP-tree) can achieve an order of magnitude faster ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010